

TECHNICAL REPORT RDMR-AD-16-01

JJOOIINNTT CCOOMMMMOONN AARRCCHHIITTEECCTTUURREE

DDEEMMOONNSSTTRRAATTIIOONN ((JJCCAA DDEEMMOO))
FFIINNAALL RREEPPOORRTT

Scott A. Wigginton
Aviation Development Directorate

Aviation and Missile Research, Development,
and Engineering Center

July 2016

Distribution Statement A: Approved for public release; distribution is
unlimited.

DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN
DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION II-19
OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION,
CHAPTER IX. FOR UNCLASSIFIED, LIMITED DOCUMENTS, DESTROY
BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS
OR RECONSTRUCTION OF THE DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE
OR SOFTWARE.

i/ii (Blank)

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1.AGENCY USE ONLY

2. REPORT DATE

 July 2016
3. REPORT TYPE AND DATES COVERED
 Final

4. TITLE AND SUBTITLE
Joint Common Architecture Demonstration (JCA Demo) Final Report

5. FUNDING NUMBERS

6. AUTHOR(S)

Scott A. Wigginton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Commander, U.S. Army Research, Development, and
 Engineering Command
ATTN: RDMR-ADA-IN
Redstone Arsenal, AL 35898-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

TR-RDMR-AD-16-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)
 The Joint Common Architecture Demonstration (JCA Demo) project was the first in a series of planned
experiments under the Joint Multi-Role (JMR) Technology Demonstrator (TD) Mission Systems Architecture
Demonstration (MSAD) Science and Technology (S&T) effort. JCA Demo focused on maturating key
standards, processes, and tools necessary for the acquisition of affordable, common, reusable avionics
capabilities. These include the Future Airborne Capability Environment (FACE™) standard, JCA Functional
Reference Architecture, Model-Based Engineering (MBE) and Architecture Centric Virtual Integration Process
(ACVIP). Through a competitive model-based acquisition effort, two vendors were selected to develop a
reusable software component that the Army successfully integrated and demonstrated on two undisclosed
mission computers. The JCA Demo approach of learning by doing resulted in dozens of actionable lessons
learned that matured each of the standards, processes, and tools necessary to tackle complexity and affordability.

14. SUBJECT TERMS

Joint Common Architecture (JCA), Future Airborne Capability Environment
(FACE™), Open Systems Architecture (OSA), Model-Based Engineering,
Architecture Centric Virtual Integration Process, Reusable Software Component,
Software Portability, Avionics

15. NUMBER OF PAGES

70
16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. Z39-18
 298-102

iii/iv (Blank)

ACKNOWLEDGMENTS

The Aviation Development Directorate (ADD) of the United States (U.S.) Army Aviation
Missile, Research, Development and Engineering Directorate (AMRDEC) gratefully
acknowledges the contributions of the following organizations in the performance of this effort:

 AMRDEC Aviation Engineering Directorate

 AMRDEC Software Engineering Directorate

 AMRDEC Aviation Systems Integration Facility

 Honeywell Aerospace

 Sikorsky Aircraft Corporation

 The Boeing Company

v

TABLE OF CONTENTS

Page

 I. INTRODUCTION ... 1

 A. Problem Statement... 1
 B. Joint Common Architecture Concept .. 2
 C. Joint Common Architecture Demonstration Project 3

 II. BACKGROUND .. 3

 A. Future Vertical Lift.. 3
 B. Joint Multi-Role Technology Demonstrator ... 3
 C. Open Systems Architecture ... 4
 D. Integrated Modular Avionics .. 5
 E. Model-Based Engineering ... 6
 F. Future Airborne Capability Environment .. 7
 G. Joint Common Architecture ... 8

 III. METHODS AND RESULTS .. 10

 A. Experiment Design ... 10
 B. Specification Process .. 11
 C. Procurement ... 12
 D. Development ... 13
 E. Integration .. 15
 F. Verification ... 21
 G. Demonstration .. 27

 IV. CONCLUSIONS AND RECOMMENDATIONS .. 28

 A. Future Airborne Capability Environment Technical Standard 29
 B. Joint Common Architecture Functional Reference Architecture and
 Model-Based Engineering ... 30
 C. Reusable Verification Component ... 30
 D. Experiment Approach ... 31
 E. Next Steps ... 31

 REFERENCES .. 33

 LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 36

 APPENDIX A: DATA CORRELATION AND FUSION MANAGER
SPECIFICATION ... A-1

vi

 TABLE OF CONTENTS (CONCLUDED)

Page

 APPENDIX B: JOINT COMMON ARCHITECTURE
DEMONSTRATION BROAD AGENCY
ANNOUNCEMENT ... B-1

 APPENDIX C: LESSONS LEARNED .. C-1

vii

LIST OF ILLUSTRATIONS

Figure Title Page

1. Combat Aircraft Functionality Requiring Software ... 1

2. Estimated Onboard SLOC Growth ... 2

3. MSAD Efforts .. 4

4. ACVIP Shadow Effort ... 7

5. FACE Architectural Segments ... 8

6. JCA Development Process .. 9

7. JCA Demo Specification Process .. 11

8. Honeywell Development Effort .. 13

9. Sikorsky/Boeing Basic Technical Approach ... 14

10. MIS System .. 16

11. JCA Demo Architecture .. 17

12. Sikorsky/Boeing Additional Integration Efforts ... 18

13. Redesign of Honeywell Reusable Verification Component 22

14. FACE Verification, Certification and Registration Process 26

15. Demonstration Scenario .. 28

viii

LIST OF TABLES

Table Title Page

1. JCA Demonstration Functional Requirements ... 12

2. ARES OE Specifications ... 15

3. Integration Issues on OE 1 .. 19

4. Integration Issues on OE 2 .. 20

5. System Level Test Results on OE 1 .. 24

6. System Level Test Results on OE 2 .. 24

1

I. INTRODUCTION

A. Problem Statement

The integration of mission equipment and software into Department of
Defense (DoD) aircraft is increasingly inefficient and becoming unaffordable. This is largely
due to the logarithmic growth in system complexity and rapid pace of change driven by
technological advancement and the proliferation of sophisticated threats. Aircraft system
capabilities based on vendor-defined architectures introduce peculiar interfaces with highly
specialized dependencies, making component upgrade or replacement very expensive. Initial
implementations may be economical and effective for a specific aircraft, but over time, they
restrict capability improvements and hinder or prevent cross-platform commonality and
fleet-wide efficiencies.

Minimizing the cost and elapsed time between the emergence of useful technologies
and fielding operational capabilities are components of national comparative advantage. Plainly
stated, the ability to incorporate technical advances faster than adversaries is part of the modern
battlefield.

The role software contributes to capabilities in modern aircraft systems cannot be
overstated. DoD systems increasingly rely on software to achieve their performance
characteristics [1]. Software has become a dominant factor in system acquisition with nearly
every aircraft function dependent on software [2], as shown in Figure 1. Software requirements
growth for commercial aircraft will soon exceed affordability limits [3], as shown in Figure 2.

Figure 1. Combat Aircraft Functionality Requiring Software

2

Figure 2. Estimated Onboard SLOC Growth

The Government Accountability Office (GAO) has numerous reports on complex
aircraft systems that encountered difficulties with software, such as the AH-64D Apache
Longbow [4], RAH-66 Comanche [1, 5], C-17 [6], F/A-18 [7], F-22 [1, 8], and F-35 Joint Strike
Fighter [9-12] to name a few. Challenges with software have led to significant cost increases,
schedule delays, fielded capabilities shortfalls, and catastrophic loss of life and property [13].

The National Aeronautics and Space Administration (NASA) recommends [14] that
tackling the architecture of systems is the best way to effectively manage complexity. Fielding
a next-generation rotary wing aircraft using existing architectural approaches is not affordable
[15]. Proper application of emerging Open Systems Architecture (OSA) approaches and
Model-Based Engineering (MBE) techniques are required to manage the complexity and achieve
the desired level of commonality across the aviation enterprise.

B. Joint Common Architecture Concept

The Joint Common Architecture (JCA) is intended to define Reusable Software
Components (RSCs) that reside on the mission computers of the vertical lift fleet. JCA
Version 1.0 will comprise a functional description of the RSCs and is being sponsored by
the Joint Multi-Role (JMR) Mission System Architecture Demonstration (MSAD) effort.
The primary objective of JCA is to enable the procurement of affordable warfighting
capability through the planned and strategic reuse of hardware and software assets across a
Future Vertical Lift (FVL) Family of Systems (FOS) using a combination of data rights, platform
abstraction, semantic precision, and functional allocation. JCA is an implementation and
technology-independent conceptual framework, providing a common vision and taxonomy that
is intended to be used as the starting point for the design and development of FVL and legacy
upgrade avionics architectures. JCA follows OSA principles and leverages existing and
emerging OSA related efforts to include the Future Airborne Capability Environment (FACETM)
Technical Standard and uses a model-driven process and design principles.

3

C. Joint Common Architecture Demonstration Project

The JCA Demonstration (JCA Demo) project was established to verify the JCA
concept and reduce risk for subsequent JMR MSAD efforts. JCA Demo investigated the
enabling technologies and key characteristics of openness—modularity, portability and
interchangeability.

JCA Demo resulted in the procurement of software components built to the same
specification but acquired from multiple vendors. These components were integrated into
multiple undisclosed Operating Environments (OEs) by a government integration team. An OE
is the combination of computing hardware and supporting software that operate below the
software application layer, the most common example of an OE is a mission computer.
Additionally, the software was executed against a common scenario in a government laboratory.
The demonstration sought to validate the following concepts:

 Functionality and data specified using JCA is sufficient to enable different
implementations to provide the same desired capability interchangeably.

 Components adhering to the FACE Technical Standard possess sufficient
portability as to allow their operation on multiple, disparate OEs.

 External interfaces adhering to the FACE data architecture promote
openness, supports interchangeability, and result in interoperability.

II. BACKGROUND

A. Future Vertical Lift

FVL is a DoD initiative to define, develop, and field a fleet of next generation air
vehicles that will ensure the United States’ dominance in the vertical lift domain throughout the
21st century and beyond. FVL development and fielding offers the potential to significantly
improve aviation combat capabilities and provide critical support to the joint warfighting
community. FVL is envisioned as a family of aircraft defined by multiple payload classes with
the potential for service-unique or specific variants. A major objective is to achieve meaningful
commonality between the air vehicle classes, mission equipment packages, and support structure,
while closing the capability gaps identified in the FVL Capability Based Assessment that
evaluated future DoD rotary wing aviation requirements.

B. Joint Multi-Role Technology Demonstrator

The Army established the JMR Technology Demonstrator (TD) in 2010 to assess
critical technologies for the FVL initiative. JMR TD is a Science and Technology (S&T) effort
intended to demonstrate transformational vertical lift capabilities and prepare the DoD for
decisions regarding the replacement of the current vertical lift fleet. It is composed of two main
efforts. The first effort is the air vehicle demonstration, which includes the design, build, and
test of enabling technologies and features for a next generation rotorcraft. The second effort is
MSAD, which is investigating, maturing, and demonstrating the processes, tools, and standards
necessary for the analysis, development, and qualification of an effective and affordable mission

4

systems architecture for FVL. The knowledge gained from this effort will be used to inform
Army development of requirements for the anticipated FVL program. The JMR MSAD
effort has three areas of emphasis: OSA, MBE, and Architecture Centric Virtual Integration
Process (ACVIP). Figure 3 shows MSAD efforts that include JCA Development and
Demonstration, Objective Mission Equipment Package (MEP) Definition, Architecture
Implementation Process Demonstrations (AIPD), and Mission Systems Architecture Capstone
Demonstration (Capstone Demo).

Figure 3. MSAD Efforts

C. Open Systems Architecture

OSA is the DoD preferred approach for implementing open systems [16], formerly
known as the Modular Open Systems Approach (MOSA). OSA is a business and technical
strategy to yield modular, interoperable systems that enables competition and innovation from
different vendors. A fundamental premise associated with open systems is that one or more
qualified third parties can add, modify, replace, remove, or provide support for a component of a
system based on open standards and published interfaces for the component of that system.
Successful OSA acquisitions result in reduced total ownership cost and enable systems to
respond to changing user requirements. Reference 16 declares that the “essence of OSA is
organized decomposition, using carefully defined execution boundaries, layered onto a
framework of software and hardware shared services and a vibrant business model that facilitates
competition.”

5

OSA is composed of five fundamental principles:

1) Modular designs based on standards with loose coupling and high cohesion
that allow for independent acquisition of system components

2) Enterprise investment strategies based on collaboration and trust that
maximize reuse of proven hardware system designs and ensure that
organizations spend the least to get the best

3) Transformation of the life cycle sustainment strategies for software intensive
systems through proven technology insertion and software product upgrade
techniques

4) Dramatically lower development risk through transparency of system designs,
continuous design disclosure, and government, academia, and industry peer
reviews

5) Strategic use of data rights to ensure a level competitive playing field and
access to alternative solutions and sources across the life cycle

D. Integrated Modular Avionics

Integrated Modular Avionics (IMA) is an approach that divides avionics functionality
into modules that can be developed and qualified incrementally for use in various aircraft.
As opposed to a traditional federated avionics approach where avionics functions are tightly
coupled on dedicated hardware components (typically, Line Replaceable Units (LRUs)), an
IMA implementation includes shared resources that have been designed and verified to a set of
safety and performance requirements. IMA offers the potential for significant reductions in the
size, weight, and power of future mission systems as a result of the sharing and optimization
of system resources. Such reductions translate to increased range, speed, and payload.
DO-297 [17] provides guidance for assurance of IMA systems. IMA is a key enabler of RSCs,
as defined by AC 20-148 [18]. Two key concepts to an IMA approach are incremental
acceptance and compositional qualification.

Incremental acceptance refers to the idea that hardware and software components
carefully selected and properly implemented can be accompanied by a partial qualification
pedigree based on the achievement of a specific subset of all qualification objectives. When
these achievements are documented, an airworthiness authority can endorse this partial pedigree
for future use.

Compositional qualification refers to the strategy of the application of a partial
qualification pedigree to the qualification of an integrated system that uses previously evaluated
components. Incremental acceptance can apply at the level of software modules, software
systems, or a hardware/software OE that supports the execution of software that provides
avionics functionality that is developed separately.

6

E. Model-Based Engineering

MBE is described as “engineering practices in which models are the central and
indispensable artifacts throughout a product’s life cycle encompassing concept, development,
deployment, operation, and maintenance” [19]. MBE is distinguished from traditional
engineering practices primarily through its use of models to convey information. The goal of
this approach is to improve communication, quality, and productivity that result from linked
interactions conveying precise, detailed information. MBE is not a new concept nor is it a single
solution to the engineering problems that exist today. The increasing level of integration and
complexity of mission systems anticipated for the next generation of aviation platforms will
require a level of specification, analysis, and awareness that is not achievable with existing
document-based engineering practices. Model-based requirements, architecture specification,
design, code generation, verification and validation activities, and advanced forms of analysis,
including virtual integration, will be necessary. This will enable automated identification of
issues and defects that historically have not been identified until later in the life cycle when these
issues are significantly more difficult to resolve and much more costly to correct. MBE provides
a mechanism for dealing with the complexity of software intensive systems.

ACVIP is a particular type of MBE focused on performing architecture centric
analysis and uncovering issues prior to the implementation of hardware/software components or
supporting trade-off analyses when considering system upgrades. This is a radically different
approach to systems/software engineering that enables incremental virtual integration,
verification, and certification processes to ensure system validity early and throughout the life
cycle, minimizing defect insertion and propagation. ACVIP focuses on architecture analyses in
the areas of requirements, safety, security, resources, and assurance and permits the virtual
integration, verification, and generation of systems. It relies on a semantically precise language,
such as the Architecture Analysis and Design Language (AADL), to model the architecture. The
goal of ACVIP is to improve quality and reduce cost and schedule to develop software-intensive,
safety- and security-critical systems. During the JCA Demo, parallel ACVIP Shadow effort was
conducted by Carnegie Mellon University (CMU) Software Engineering Institute (SEI) and
Adventium Labs, as shown in Figure 4. It focused on requirements, safety, and timing analysis
of the component and its integration into the larger system. Details and results from those efforts
are in References 20 through 24.

7

Figure 4. ACVIP Shadow Effort

F. Future Airborne Capability Environment

The FACE Technical Standard [25] establishes and standardizes a common software
environment that supports portability of software applications across systems. It is based on
IMA and OSA principles and utilizes current widely adopted industry standards. In contrast to
previous OSA initiatives which offer only general guidance on designing open systems, the
FACE Technical Standard clearly describes the reference architecture and specifies the key
interfaces that enable a product line approach to software development, as shown in Figure 5.
Furthermore, the FACE approach is built around a business strategy with policies and procedures
for establishing and maintaining a marketplace of FACE software components that can be reused
by multiple systems.

8

Figure 5. FACE Architectural Segments

G. Joint Common Architecture

The JCA is considered a Functional Reference Architecture (FRA). As such, JCA is
a government-owned, implementation, and technology-independent conceptual framework that is
intended to be used as the starting point for the design and development of FVL and legacy
upgrade avionics architectures. The JCA provides a conceptual description of a set of generic
avionics subsystems (typically, LRUs) and a functionally decomposed mission computing
subsystem comprising a functional model and a semantic data model. The mission computer
subsystem is the current focus of JCA development efforts and is expected to be required to host
FACE software. JCA defines the Mission Level Capabilities (MLCs) and the constituent
Low-Level Capabilities (LLCs) that will be composed into definitions of procurable RSCs
hosted on the mission computer. The MLC definitions include functional descriptions and the
identification of data provided and required. As a conceptual level description, JCA identifies
the high-level functionality of software enabled capabilities inclusive of the data provided and
required by that functionality. The functional description provides the boundary of desired
modularity while the identified data provides the context for the functionality. The data
contained within the JCA FRA provide the basis for defining a government-owned software
product line of RSCs that support a fleet-wide business strategy of OSA implementation and
strategic reuse.

9

The JCA development is an evolving and maturing process, as shown in Figure 6,
consisting of a collaborative mix of government and industry performed activities. While the
responsibility for development of the JCA FRA lies with the government, development of the
actual software component is expected to be an industry function. The government will define
the needed capabilities, the organizational and functional boundaries as well as the definitions
and specification of the component, and its interfaces at a conceptual and logical level. The
process and methods for accomplishing this function is guided by an overarching and systematic
approach to commonality and reuse. The resulting JCA component definitions will be managed
by the government and serve as the basis for a product line approach that provides necessary
software enabled capabilities to vertical lift platforms in a managed and consistent manner. JCA
is focused on the definition, specification, and interaction of the component at its boundaries.
This definition is provided to industry to guide and inform software development activities.

Figure 6. JCA Development Process

Avionics is the focus of JCA as it is anticipated to be a key areas within the FVL
where opportunities for commonality and reuse exist. Army aviation currently reaps the benefits
of reusing technically mature subsystems across its fleet of rotary wing aircraft, but the practice
of reusing software capabilities is rare, and where it has occurred, it has been unplanned and
inefficient. The reuse of software components in safety critical systems is a very immature

10

practice and frequently thwarted by the tight coupling of software capability to platform specific
implementations. Reuse for FVL at both the subsystem and component levels necessitates a
common OE that enables efficient software portability and reuse. As a result, the United States
(U.S.) Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC)
joined with the Navy as a founding member of the FACE Consortium. While the FACE
Technical Standard is critical to JCA, it only addresses a portion of the overall scope of the
problem.

III. METHODS AND RESULTS

The JCA Demo was conducted to validate the JCA concept, exercise the FACE standard
and tools, and reduce risk for follow on MSAD efforts.

A. Experiment Design

The OSA Contract Guidebook [16] states that achievement of the five OSA principles
requires that one or more qualified third parties be able to add, modify, replace, remove, or
provide support for a component of a system, based on open standards and published interfaces
for the component of that system. Therefore, the approach taken for JCA Demo was to procure a
single software component from multiple vendors for integration into multiple OEs unknown to
the vendors. This would demonstrate integration of multiple versions of the same component
into multiple systems (a step beyond the OSA definition). The use of open standards and
published interfaces was achieved by requiring alignment to the FACE standard with a
model-based specification for a component generated from the JCA process. To ensure integrity
of the process and maximize the lessons learned, the government served as Systems Integrator,
and interactions with the vendors was tightly controlled. Once integrated into the OEs, the
components were executed against a common mission scenario. The expected outcome would
be to observe correct functionality against the component’s requirements, regardless of who
provided the component or what system it operated upon. The JCA Demo emphasized
processes, tools, and lessons learned over the performance of the procured components.

Each vendor was required to deliver a Reusable Verification Component (RVC) as
recommended in the Army handbook on airworthy reuse of FACE software [26] to ensure
correct operation of the software component on any of the candidate OE’s. The RVC builds on
the concept of a portable software test harness to provide the full suite of capability required to
verify that a software component satisfies all of its performance requirements regardless of
computing environment. The RVC would contain test procedures and documentation for a
Systems Integrator to execute on the target hardware.

The U.S. Army’s FACE Verification Authority (VA) would evaluate the delivered
software components for conformance to the FACE Technical Standard. The FACE Shared Data
Model (SDM) Version 2.0 was not released in time for inclusion in the specification. As a result,
it was known that the data model provided by the government would not pass that aspect of
FACE conformance; however, all other aspects of FACE conformance were expected to pass.

11

The documentation, tracking, management, and resolution of lessons learned was
a core element of JCA Demo. The mantra that processes, tools, and lessons learned are more
important than component performance was applied throughout the execution of this study.

B. Specification Process

An S&T Situational Awareness (SA) system called Modular Integrated Survivability
(MIS) was selected as the target system for JCA Demo with the MIS team performing the
systems integration. The MIS system resides within the Aviation Systems Integration Facility
(ASIF) at the AMRDEC Software Engineering Directorate (SED) complex on Redstone Arsenal,
AL. MIS is comprised of multiple OEs, multiple sensors, a Multi-Function Display (MFD), and
software built to the FACE Standard. Based on the types of data available within MIS, a Data
Correlation and Fusion Manager (DCFM) was selected as the software component to be
procured and integrated during JCA Demo. Due to cost and schedule considerations, two OEs
were chosen for the demonstration, one based on the VxWorks® Operating System and another
on the LynxOS® Operating System. Composition information of the MIS system was withheld
from the vendors until after component software was delivered.

The government used an earlier version of the JCA process, as shown in Figure 7, to
decompose the track correlation functionality into a DCFM software component specification.
The DCFM was specified as a FACE Unit of Portability (UoP), where its interface and behavior
was captured using a model-based specification in the form of a FACE data model plus two
behavior component interaction diagrams. The government also provided a minimal set of
functional requirements for demonstration purposes only, as shown in Table 1. Appendix A
includes an excerpt from the DCFM specification.

Figure 7. JCA Demo Specification Process

12

Table 1. JCA Demo Functional Requirements

ID Requirement

JCAD_1
The DCFM shall analyze uncorrelated source tracks in order to identify a single
correlated track believed to represent the same uncorrelated source tracks,
combining the data from the duplicate uncorrelated source tracks as appropriate

JCAD_2
The DCFM shall analyze correlated source tracks in order to identify separate
tracks, breaking the linkage of the correlated track with the uncorrelated source
tracks, as appropriate

JCAD_3 The DCFM shall analyze tracks within 25 km of own-ship position

JCAD_4 The DCFM shall correlate or decorrelate 50 source tracks within 1 second

JCAD_5
The DCFM data model shall be used during the development of the software
component

JCAD_6 The DCFM shall be built as a FACE UoP, as specified in the data model

JCAD_7
The DCFM shall have a verification statement provided by the candidate FACE
Conformance Tool Suite for the FACE Edition 2.0

C. Procurement

A Broad Agency Announcement (BAA) was chosen as the solicitation method for
JCA Demo. Prior to its release, a Request for Information (RFI) was published that included the
draft BAA to determine the validity of the approach and the sufficiency of the model-based
specification. Responses to the RFI were positive, resulting in minor modifications, and the
BAA was released 6 months later. The OSA Handbook and draft FACE contract guide were
used to generate Section L (Instructions to Offerors) and Section M (Evaluation Factors for
Award) of the BAA. The BAA [27] is in Appendix B, and the following is a summary of the
listed requirements:

 Developers were required to deliver a DCFM software component that met
the requirements of the textual and model-based specification

 Developers were required to demonstrate how the DCFM would meet the
requirements of the FACE Technical Standard

 Developers were required to utilize the candidate FACE Ecosystem tools,
which included candidate versions of a Conformance Test Suite, Modeling
Tools, and an Interface Definition Language (IDL) compiler

 Developers were required to deliver an RVC to provide unit test capability
for any OE

 Developers were required to provide DCFM behavior and performance
characteristics during the development process

13

 Developers were required to provide impacts to airworthiness from the
process, though the DCFM was developed specifically for laboratory use
with no airworthiness requirements.

Two awards were made as a result of the BAA: Honeywell Aerospace and a
Sikorsky Aircraft Corporation/The Boeing Company partnership. Each award resulted in a
Technology Investment Agreement with the U.S. Army.

D. Development

1. Honeywell

The Honeywell effort delivered three components: the DCFM UoP, the RVC
UoP, and an RVC Controller, as shown in Figure 8. The DCFM functionality was based on
reusing an algorithm previously developed for NASA that was auto generated from Matlab
models. The DCFM interface was generated from the FACE Ecosystem. The RVC was
developed as a FACE UoP that would interact with an RVC Controller that runs on a test
platform (such as a laptop). The RVC interface to the DCFM mimicked that of the Situational
Awareness Database Manager (SADM) component from MIS. The interface between the RVC
UoP and RVC Controller was constructed as an internal interface for simplicity which does not
align to the FACE standard. This interface requires certain Input/Output (I/O) be available for
any OE in order to execute the RVC.

Figure 8. Honeywell Development Effort

14

The Honeywell Final Report [28] captures the full description of the effort to
include the methods and procedures used, results, conclusions, and recommendations.

2. Sikorsky/Boeing Effort

Sikorsky and Boeing are teamed on the effort to develop and demonstrate the
DefiantTM aircraft as part of the JMR Air Vehicle Demonstrator (AVD) and utilized the same
approach for JCA Demo. Boeing’s Cohesion software provided the functionality for the DCFM
UoP, as shown in Figure 9. Cohesion is a fusion application used on several military aircraft,
including P-8A, Airborne Warning and Control System (AWACS), and B-1B. A software
interface layer that conforms to the FACE standard and provided DCFM data model entities was
added to Cohesion. The FACE Ecosystem tools produced C++ structures from the data model.
The RVC was also developed as a FACE UoP, and its interface was generated from the FACE
Ecosystem tools using the DCFM data model. The Sikorsky AnyCASETM tool was used to
auto-generate additional software for the RVC to implement the test cases. Domain-specific
tests were generated from a modeling capability built into the AnyCASETM tool. An
unanticipated finding was that this process revealed the potential to create a generally usable
RVC that does not depend on the UoP it is testing. The same meta-model used by the
AnyCASETM tool can be used for any RVC.

Figure 9. Sikorsky/Boeing Basic Technical Approach

15

Sikorsky/Boeing performed two additional tasks beyond the BAA
requirements. The first task integrated the DCFM on three different OEs representing current,
emerging, and future platforms, which reinforced the findings from the government integration
effort. The second task developed a flight control application as a FACE software component
and measured latency introduced by adhering to the FACE architecture, which was measured at
22.6 microseconds. The Sikorsky/Boeing Final Report [29] includes a full description of the
technical work accomplished, methods, and procedures used, results, conclusions, and
recommendations.

E. Integration

1. System Description

The MIS S&T program created an avionics environment laboratory asset
utilizing MBE and the FACE standard, which has application beyond its original intent. Now
known as the AMRDEC Avionics Reference Embedded System (ARES), it comprises multiple
OEs and an integrated MBE tool chain. ARES OEs 1-4, as shown in Table 2, were selected for
their differences in a Processor, Real-Time Operating System (RTOS) and I/O.

Table 2. ARES OE Specifications

16

MIS contains several representative mission system software components which
were used in JCA Demo to stimulate the DCFM. The SADM gathers data from an Embedded
Global Positioning System and Inertial Navigation System (EGI) Controller, APR-39D Radar
Warning Receiver Controller, Weapons Watch Controller, and Tactical Data Modem Controller.
These controllers are part of the FACE Platform Specific Services Segment (PSSS), which
manages data and translation between the LRU specific Interface Control Documents (ICDs) and
the FACE data model, enabling abstraction of the data provided to the SADM from the LRU that
provides the data. The SADM interacts with the DCFM and provides results to a Display
Controller for presenting the data on a digital map. While several of the LRUs were available in
the ASIF, for the purposes of the demonstration, the inputs were simulated. The majority of
these came from Virtual Battlespace (VBS) 3.0, which provided the virtual world and data from
the interactions therein, such as the as the simulated EGI data and messages for incoming fires
(APR39 and Weapon Watch). A simulated Integrated Data Modem (IDM) provided the tactical
data. Figure 10 depicts the MIS system, and Figure 11 shows the architecture for JCA Demo.

Figure 10. MIS System

(Operating Environment 2)

(Operating Environment 1)

WeaponWatch
Controller

SA Data
Manager

EGI
Controller

Platform
Simulation

APR39

WeaponWatch
Smart

Display

IDM Simulator
Tactical Data

Modem
Controller

APR39
Controller

Display
Controller

17

Figure 11. JCA Demo Architecture

2. Integration Approach Overview

Each software package was inspected for completeness and correct
documentation when received from the DCFM developers. Following an inspection, the
DCFM and RVC from each vendor was executed within a simulated Aeronautical Radio,
Incorporated (ARINC) 653 environment to validate their operation against the component
supplier test cases in the form of an RVC. After validation in the simulated environment, the
source code was ported to the two selected OEs and integrated with the MIS system. The
integration team generated test cases based on the DCFM system-level requirements. Each
DCFM was tested on each OE against the test cases. Issues, concerns, corrective actions, and
resolutions were documented throughout the process. Finally, the integration team prepared a

18

laboratory demonstration scenario to display the functionality of the DCFM component in
operational use. The video output was recorded for each configuration and compared to a
control case (with no DCFM executing). The next three sections provide greater detail on the
MIS integration activities.

In addition to the MIS integration, the Sikorsky/Boeing team successfully
integrated [29] their DCFM, as shown by the green boxes in Figure 12. These OEs represent an
AH-64E Apache Mission Computer, S-97 Raider Mission Computer, and an Advanced
Architecture Mission Computer. Those efforts are documented in the Sikorsky/Boeing Final
Report.

Figure 12. Sikorsky/Boeing Additional Integration Efforts

3. Integration on the ARINC 653 Emulator

The FACE tools include a simulated ARINC 653 environment that provided the
method used during JCA Demo for performing early assessment on the quality of the delivered
software prior to integration on the target environments. The MIS team had compilation
difficulties with each DCFM for various issues ranging from details on compiler versions, build
management settings in CMake, and versions of the standard C++ libraries. Identifying and
resolving these issues early in the integration timeline led to significant improvements to the
remainder of the integration tasks.

19

After successful compilation of each DCFM for the emulator, the MIS team
compiled its corresponding RVC. The DCFM and RVC were executed on the emulator to verify
correct operation of the delivered software against its software requirements prior to integration
on the target environments.

4. Integration on OE 1

Integration on OE 1 encountered minor issues due to a lack of RTOS
conformance to the FACE Operating System Segment (OSS) and ARINC 653 standardization of
certain elements. These issues were fixed by generating a wrapper to provide an OS interface
aligned to the FACE standard along with minor software modifications. Table 3 captures the
issues, their resolutions, and recommendations going forward.

Table 3. Integration Issues on OE 1

Issue Resolution Recommendation
Difference in header file
naming convention
between RTOS

Modified delivered software to
match header files provided by
RTOS

ARINC 653 should standardize
header file naming conventions

VxWorks 653
configuration data
requirements varied from
the ARINC 653 Emulator

Changed configuration data
parameters

ARINC 653 should standardize
configuration data
requirements

VxWorks653
configuration limited
connection names for
queueing ports to 30
characters

Shortened connection names
ARINC 653 should standardize
name lengths

VxWorks653 operating
system scheduler did not
correctly execute periodic
activities that worked on
the simulated ARINC-653
environment

Added loop to ensure that core
processing occurred
periodically

The FACE tools generated
function calls specific to
the ARINC 653 Emulator

Manually replaced with
VxWorks 653 function calls

FACE tools should generate
generic code that only depends
on RTOS APIs

Resolution of issues
Integration Team modified
DCFM source code to resolve
issues previously listed

Transport Services (TS)
implementation should have
been modified to resolve
integration issues

20

5. Integration on OE 2

Integration on OE 2 also encountered issues due to the lack of RTOS
conformance to the FACE standard. Additional issues were observed such as lack of
LynxOS-178 compiler support and process execution that was noncompliant to the ARINC 653
standard, which could cause problems when reusing object code. These issues were fixed by
generating a wrapper to provide an OS interface aligned to the FACE standard along with minor
software modification changes. Table 4 captures those issues, their resolutions, and
recommendations going forward.

Table 4. Integration Issues on OE 2

Issue Resolution Recommendation
Difference in header file
naming convention
between RTOS

Modified delivered software to
match header files provided by
RTOS

ARINC 653 should standardize
header file naming conventions

LynxOS-178 did not
support < and >
characters used for port
names

Changed port name characters
ARINC 653 should standardize
allowable characters

LynxOS-178 requires
ARINC 653 processes as
separate executables

Converted to Portable Operating
System Interface for Unix
(POSIX) threads

LynxOS-178 compliance to
ARINC 653 standard

LynxOS-178 lack of
compiler support

Added parentheses to enforce
proper order of operations in
matrix mathematics for several
files that would not compile due
to incorrect interpretation

LynxOS-178 Standardize
compiler support

LynxOS-178 lack of
compiler support

Changed and to &&
LynxOS-178 Standardize
compiler support

LynxOS-178 lack of
compiler support

Replaced
std::numeric_limits<unsigned
long>::max()” with
ULONG_MAX

LynxOS-178 Standardize
compiler support

LynxOS-178 lack of
compiler support

Added #include <new> statement
to get a “placement new” type of
new operator to compile

LynxOS-178 Standardize
compiler support

Resolution of issues
Integration Team modified
DCFM source code to resolve
issues previously listed

TS implementation should
have been modified to resolve
integration issues

21

F. Verification

The delivered software was verified for performance against the DCFM
requirements and conformance to the FACE Technical Standard. Performance requirements
were verified at the unit and system levels. Conformance to the FACE Technical Standard
occurred through the Army’s FACE VA.

1. Unit Level Test

Each vendor was required to deliver an RVC to test their DCFM against its
software requirements. The RVCs were to ensure that unit level tests could be performed on any
potential OE. The approach to verification was to first ensure correct operation of the delivered
DCFM prior to integration on the OEs. This occurred utilizing the ARINC 653 Emulator
included in the FACE tool suite. The next logical step would be to integrate the DCFM and
RVC on the OE to perform unit level test; however, this was not included in the program
schedule and did not occur until several months after completion of the demonstration. The
RVC approach showed potential to satisfy some airworthiness requirements for RSCs [30].

a. Honeywell RVC

The first verification of the Honeywell DCFM using their RVC occurred on
the ARINC 653 Emulator running on Linux. The only modification necessary was due to the
64-bit Linux where long integers were defaulted to 8 bytes, which had to be changed back to
4 bytes. After correction, the Honeywell DCFM passed all tests executed by the RVC.

Integrating the Honeywell RVC on OE 1 required significant effort. Since
the Honeywell RVC utilized an external controller application to communicate with the RVC
UoP running on the OE, the RVC UoP was dependent on the availability of the User Datagram
Protocol (UDP) running over an Ethernet interface. For OE 1, the WindRiver VxWorks 653
RTOS does not provide this interface directly to applications, which required the MIS team to
redesign Honeywell’s RVC UoP for this OE, as shown in Figure 13. Furthermore the Honeywell
RVC UoP directly called POSIX Sockets from a partition which is not permitted in the FACE
standard or supported by VxWorks 653. The MIS team replaced the UDP Ethernet interface
with a FACE aligned Input/Output Segment (IOS) interface to achieve UDP communications.
The MIS team also had to resolve an issue with endianness (byte ordering) between the RVC
UoP and the external controller. Finally, some minor changes were required due to the use of
C++ objects and functions not allowed by the FACE standard or supported by the RTOS. For
OE 2, similar issues to OE 1 were required, including replacing the UDP interface, correcting for
endianness, and the C++ functionality. The Honeywell DCFM ultimately passed all tests
executed by the RVC on OE 1 and OE 2.

22

Figure 13. Redesign of Honeywell Reusable Verification Component

b. Sikorsky/Boeing RVC

The first verification of the Sikorsky/Boeing DCFM using their RVC
occurred on the ARINC 653 Emulator running on Linux. The software components were
compiled and executed with little effort. The DCFM passed all tests of the RVC. Since the
Sikorsky/Boeing RVC was developed completely as a FACE application, integration onto each
OE was straightforward. The changes necessary to the RVC mirrored the ones observed when
integrating the DCFM on the OE and are described in Tables 2 and 3. The Sikorsky/Boeing
DCFM passed all tests executed by the RVC on OE 1.

c. Mixing RVCs Between DCFMs

During execution of JCA Demo it was frequently asked “what would
happen if you ran the RVC from one vendor against the other vendor’s DCFM?” After
completing the RVC efforts for OE 1, the MIS team attempted it. The Sikorsky/Boeing RVC
successfully executed against the Honeywell DCFM on OE 1 with nearly identical test results
(compared to the Sikorsky/Boeing DCFM). This was not the case when testing the
Sikorsky/Boeing DCFM with the Honeywell RVC.

While JCA Demo only contained minimal high-level requirements for basic
functionality, both the Honeywell and Sikorsky/Boeing DCFMs were derived from existing
software components that had been previously defined by their own set of functional and
performance requirements. Those requirements were implemented within a specific architecture
and designed for a specific environment or set of environments. Even if the high-level
requirements were identical to those in JCA Demo, a deviation between low-level requirements
resulted in mismatches that were not initially recognized and required specific integration
activities to resolve.

23

For example, a discrepancy occurred over the necessity of certain data fields
in the set of test data. This was uncovered when swapping the RVCs. The Sikorsky/Boeing
DCFM required an error association greater than zero to determine validity while the Honeywell
DCFM was ambivalent to the data value. As a result, when the Honeywell RVC provided source
tracks with location errors that equaled zero, the Sikorsky/Boeing DCFM did not include them
for correlation. This represents a mismatch of low-level requirements that would require
additional integration work or modification of the original software to meet the requirements.

Another issue occurred regarding how each DCFM treated data coming
from sensors. The Sikorsky/Boeing DCFM does not correlate tracks that come from the same
source (for example, multiple tracks from a Radar Warning Receiver). This low-level
requirement represents a design decision based upon system characteristics, in this case, that
all sensors have predetermined their outputs to be unique tracks. The failure of the
Sikorsky/Boeing DCFM to perform properly when tested by the Honeywell RVC is a good
illustration of issues that can be encountered when trying to reuse a component in systems that
have different low-level requirements. This underscores that RSC’s reflect architectural
decisions that may or may not be apparent to a reusing organization. Such inherited decisions
have a direct impact on the ease of reuse and suitability of the RSC and require sufficient
understanding of the RSC behavior and data. In this case, the issue may have been uncovered
through the normal course of requirements development, analysis, and technical reviews but only
if sufficient documentation exists and it is available for the integrator to use. To ensure this, a
formal software development process, such as RTCA’s DO-178, and data right strategy is
required.

During this effort, it was observed that the RVC can serve as an abstraction
of the target system from the perspective of the DCFM. This has led to preliminary concepts of
a system-level RVC that can be provided in solicitation to convey a golden test case for the
target system that could serve as an early integration suitability test along the lines of ACVIP.
This concept needs to be further refined and investigated in future experiments.

JCA Demo did not investigate elements of dead or deactivated code that
would inherently exist within an RSC or how an RVC would aid in the demonstration of
deactivation mechanisms. This is of paramount importance in the airworthiness considerations
for an RSC and should be investigated in future efforts.

Mixing RVCs revealed challenges of software interchangeability that unless
all high- and low-level requirements are identical between software components, there is no
guarantee of correct software performance.

2. System-Level Test

The MIS team generated a System-Level Integration test to verify the system
level requirements (excluding the FACE requirements). To perform this test, a scenario was
created to simulated aircraft platform motion and sensor detection of threats. The sensor data
was aggregated by the SADM and provided to the DCFM as input. Correlated output was
collected from the DCFM by the SADM and transferred to an external map display to visually

24

present the host aircraft location, input source tracks, and output correlated tracks. I/O data were
collected for post-run analysis. The test results based on OE are in Tables 5 and 6.

Table 5. System Level Test Results on OE 1

Requirement Method Vendor Result
The DCFM shall analyze uncorrelated source tracks in
order to identify a single correlated track believed to
represent the same uncorrelated source tracks, combining
the data from the duplicate uncorrelated source tracks, as
appropriate

Demonstration

Honeywell Pass

Sikorsky
Boeing

Pass

The DCFM shall analyze correlated source tracks in
order to identify separate tracks, breaking the linkage of
the correlated track with the uncorrelated source tracks,
as appropriate

Test

Honeywell Pass

Sikorsky
Boeing

Fail

The DCFM shall analyze tracks within 25 km of
own-ship position

Demonstration
Test

Honeywell Pass

Sikorsky
Boeing

Pass

The DCFM shall correlate or decorrelate 50 source
tracks within 1 second

Test/Inspection
Honeywell Fail
Sikorsky
Boeing

Pass

Table 6. System Level Test Results on OE 2

Requirement Method Vendor Result
The DCFM shall analyze uncorrelated source tracks in
order to identify a single correlated track believed to
represent the same uncorrelated source tracks, combining
the data from the duplicate uncorrelated source tracks, as
appropriate

Demonstration

Honeywell Pass

Sikorsky
Boeing

Pass

The DCFM shall analyze correlated source tracks in
order to identify separate tracks, breaking the linkage of
the correlated track with the uncorrelated source tracks,
as appropriate

Test

Honeywell Pass

Sikorsky
Boeing

Fail

The DCFM shall analyze tracks within 25 km of
own-ship position

Demonstration
Test

Honeywell Pass

Sikorsky
Boeing

Pass

The DCFM shall correlate or decorrelate 50 source
tracks within 1 second

Test/Inspection
Honeywell Pass
Sikorsky
Boeing

Pass

25

The Honeywell DCFM failure to correlate within the required 1 second on OE1
is attributed to the modification of the VxWorks 653 scheduling which negatively impacted
performance. This issue was not observed on OE 2 as the scheduling was not modified.

The Sikorsky/Boeing DCFM failed to decorrelate tracks within the
parameters of the test for both OE 1 and OE 2. MIS analysis identified that the parameters
used for the system test were insufficient to trigger a decorrelation event for their algorithm.
Sikorsky/Boeing developers confirmed the MIS analysis and verified that the DCFM was
operating in accordance with its software requirements. This disconnect between system-level
and software requirements is another example of a barrier to software reuse, requiring Systems
Integrators to analyze all software requirements for second- and third-order effects to system
level tests when reused on a new system. One proposed approach to reduce the likelihood of
this disconnect would be to include a system level test data set with the solicitation to enable
third-party developers to understand the interaction and implications for their component.

3. FACE Verification

The Army’s FACE VA was utilized to verify that each vendor’s DCFM met
the FACE requirements. The BAA required delivery of preliminary, initial, and final FACE
verification packages. As previously mentioned, it was known that the DCFM data model would
not pass conformance to the FACE SDM.

FACE Conformance verification has three major elements:

1) Conformance Test Suite (CTS)

2) Conformance Matrix

3) Conformance Statement

The CTS is a FACE Ecosystem computing tool that analyzes the
post-compilation object code of the candidate UoP to ensure that the software uses ARINC 653
or POSIX calls allowed by the FACE standard for the selected profile for that operating system.
The tool produces pass or fail results. The conformance matrix is a list of requirements as
specified by the FACE standard for visual inspection. It identifies requirements for additional
documentation that need to be provided to show that the software conforms to the standard. The
VA checks the submitted matrix and documentation for correctness and completeness. The
conformance statement is prepared by the developer to identify UoP details, such as version
number and selected operating system profile. It may also list conditional requirements that
were not addressed.

Some of the issues encountered during the VA process stemmed from the lack
of availability of the FACE Conformance Guide, which had been developed but not published by
the FACE Consortium. A draft version of this guide was delivered to JCA Demo participants
after the problems were discovered. The Army’s FACE VA also generated a guide to their
processes as a result of these issues and updated their process documents to address the lessons
learned.

26

The process for FACE verification, certification and registration is shown in
Figure 14. JCA Demo interaction with the FACE VA included submission for certification, even
though the component was known not to be conformant. This was done to exercise the process
and determine if there were any issues.

Figure 14. FACE Verification, Certification and Registration Process

It was decided to handle the verification and mock certification process
differently between the Sikorsky/Boeing team and the Honeywell team. Sikorsky/Boeing, as the
DCFM Supplier, submitted their FACE CTS verification data and Conformance Statement
directly to the FACE VA. Honeywell, as the other DCFM Supplier, submitted their FACE CTS
verification data and Conformance Statement to the government project engineer, who then
coordinated with the FACE VA as a government Product Management Office (PMO) surrogate
to demonstrate another method of verification.

a. Honeywell DCFM FACE Verification

For the Honeywell effort, the government team served as the submitting
PMO organization to the VA based on the deliverables from the vendor. This was done to see
how the government would interact with the FACE VA in following the process for obtaining
certification. Honeywell executed the FACE CTS before the delivery of the software and
submitted the results along with the necessary technical artifacts (for example, requirements,
software design documents, verification documents, and so forth) to the government PMO
surrogate. The government PMO surrogate submitted the CTS results to the FACE VA, who
requested that a Conformance Statement be submitted in conjunction with the CTS results and
artifacts. The Conformance Statement was missing instructions and vague in areas and
therefore, required clarification by the FACE VA. This resulted in generation of a Technical
Instruction outlining the process for the verification and registration process, plus improvement
of the Conformance Statement instructions. These instructions were coordinated with
Honeywell who provided the answers to complete the submission of the DCFM’s CTS results,
Conformance Statement, artifacts, and software to the government PMO to review and relay
to the FACE VA. Also as part of this process, the software was registered on the FACE
Registration Site. The FACE Library Registry website contains questions and requires data be

27

submitted. However, the instructions were vague so the government PMO surrogate coordinated
with the FACE Library Registry website administrator to correct the shortcomings in the
instructions. The government PMO surrogate completed the registration process with the
verification submission on the FACE Registration website. Exercising this process was very
beneficial in improving the FACE VA instructions and FACE Library Registry website
instructions.

During post-software development, the DCFM software and data model
were run through the FACE CTS. The Honeywell DCFM Component passed verification
testing, except for conformance to the FACE SDM 2.0, as expected.

b. Sikorsky/Boeing DCFM FACE Verification

Sikorsky/Boeing worked directly with the VA to submit documentation
and resolve issues. This included utilizing the beta version of the FACE Library Registry,
particularly the areas meant to guide developers through the verification process.
Sikorsky/Boeing found similar issues with the FACE Registry process and Conformance
Statement that were resolved.

In the preliminary submission, the VA found unallowable POSIX calls that
were in the original Cohesion source code, which were resolved with conditional compiler flags.
During the initial submission, the VA identified a false positive that was corrected by changing
the input to the conformance suite and adding compiler-specific code. The final submission
passed all requirements except for the expected conformance issue associated with the FACE
SDM 2.0.

G. Demonstration

The purpose of the demonstration was to show portability of the independently
developed software components correctly performing DCFM functionality on both OEs. A
scenario was created that would depict track data on a moving map that could be recorded in
order to present visual evidence of DCFM operation.

1. Demonstration Scenario

A single correlation event scenario was used for the demonstration. In the
scenario, an Unmanned Aircraft System (UAS) is tasked to locate insurgent activity. It
detects and reports the location of a possible threat to a simulated helicopter through a tactical
network as a Variable Message Format (VMF) message, which is provided to the SADM. The
helicopter navigates to the location and uses onboard sensors to detect hostile fire from the
previously identified threat and provides the information to the SADM. The DCFM then
correlates the twice reported threat into a single entity. The helicopter engages the hostile threat
to complete the mission.

2. Demonstration Infrastructure

In addition to the two OEs, the following infrastructure was used for the
demonstration. VBS 3.0 was used to model the scenario used for demonstration. Harris

28

FliteScene™ was used to display output from the representative mission system on a map. MIS
Threat Stimulator software application converted messages from VBS into representative
formats for each LRU.

3. Demonstration Execution

The scenario was executed for all OE/DCFM configurations to include a control
(no DCFM). Video was captured of the visualization from VBS and FliteScene™ for each
DCFM/OE configuration. For each OE, a video was stitched together, as shown in Figure 15.
Video displaying the VBS 3.0 view of the scenario (top left), baseline configuration (bottom
left), the Sikorsky/Boeing DCFM (top right), and the Honeywell DCFM (bottom right) were all
displayed on a video screen at the same time. The captured videos showed both DCFMs
functioned correctly on both OEs.

Figure 15. Demonstration Scenario

IV. CONCLUSIONS AND RECOMMENDATIONS

JCA Demo was designed to investigate the potential of using OSA, FRA, and MBE in an
acquisition approach to efficiently achieve strategic software reuse. The results show that it was
possible in a narrowly defined case involving very few components with minimal interactions
and relatively benign performance requirements. The approach taken by JCA Demo to use the

29

government as the systems integrator and tightly regulate interaction between the component
developers and integrators proved effective in generating significant lessons learned related to
the processes, tools, and standards employed. Considerable additional investigation is required
before the government can be confident that the processes, tools, and standards are sufficiently
capable and mature enough to address the challenges presented by the complexity of modern
aircraft systems. The following sections contain details pertaining to specific aspects of the
processes, standards, and tools used during JCA Demo.

A. Future Airborne Capability Environment Technical Standard

The FACE Technical Standard provided the common software environment that
enabled software portability across OEs. This portability is critical for efficient software reuse
but does not address the functionality and behavior of the component or the full environment
into which the component will be integrated.

The government, acting in the role of Systems Integrator, provided only minimal
behavioral and performance information to the vendors regarding the interaction of the defined
interface. Through utilization of the FACE standard, vendors were able to deliver software
components that could be integrated onto each OE despite not knowing which processors,
RTOSs, or transport mechanisms that the software would execute on or the types and
combinations of sensors from which it would receive data.

While the FACE data model provided symantic and syntactic understanding of the
interface data elements, it did not include behavioral information on the system. As a result, the
vendors were required to make assumptions on the architecture and design of the target system.
These assumptions were not stressed under JCA Demo but could prove problematic under a
more stringent set of system requirements and test cases thus requiring more than a data model.

Training on the FACE Technical Standard was observed to be a challenge for
personnel not involved in the consortium. Formal training and best practices do not currently
exist for the FACE standard. This shortfall is exacerbated by the requirement for data modeling
that requires an approach to interface development that may not be familiar to all parties
involved. Creating the DCFM data model in accordance with the FACE data architecture was
labor intensive. It is unclear if this was due to pathfinding the new process or whether the model
was efficiently scaled for complex components.

Vendors noted that it was relatively easy to convert their modular, legacy software
code to a FACE UoP. It is unknown what level of effort would have been required to develop
the DCFM from scratch as a FACE UoP. Future experimentation should include new software
development alongside the conversion of legacy software to a FACE UoP to enable comparisons
of the approaches and to identify impacts and implications.

Key elements of the FACE Conformance process were executed, matured, and found
to be ready for use. No fundamental flaws were found in the FACE standard. Future efforts
should maintain close coordination with the FACE Consortium and utilize the change processes
to ensure that future enhancements to the FACE standard and Ecosystem occur in a timely
manner.

30

B. Joint Common Architecture Functional Reference Architecture and
Model-Based Engineering

The JCA FRA, combined with a series of high-level sequence diagrams and textual
performance requirements, constituted the supporting data model for specification of the
DCFMs. Modularity was achieved through the functionality constrained by JCA, model-based
interface, and textual requirements specification. Improvements were made to the JCA
functional and data models as well as the development process for future efforts. Challenges
were uncovered over the need for behavioral modeling, the interaction between data and
behavioral models, methods to convey critical architectural context, and the level of
requirements specificity necessary to achieve interchangeability. Future demonstrations should
try to determine the minimum amount of behavioral specification necessary (sequence, activity,
state, use cases, and so forth) to describe required component/system interaction to efficiently
achieve reuse.

Given the limited goals of the JCA Demo, it remains unclear how the necessary
models will be developed in an FVL acquisition environment and which organizations will be
responsible for developing them at each point in the process. Model-based processes are
anticipated to be the primary method of acquiring software capability on future programs. The
government’s role involves architectural definition and specification at the conceptual and
logical level. Modeling at those levels requires an understanding of the informational needs to
be conveyed and a larger, more comprehensive vision for strategic software reuse. Neither the
understanding nor the vision is well-defined at this point, which underscores the importance of
continuing to perform demonstrations like JCA Demo. A component’s functional description
must be carefully coordinated with a corresponding data description so that context and
consistency are maintained. Significant investment will need to be made in both tool
development and training in order to provide automation and translation functions that currently
are challenging and time consuming. Training is necessary to assist all participants in changing
the current culture of paper-based specifications and understanding the proper way to implement
a model-based development environment. The potential benefit justifies the investments in
training for the FACE Data Architecture and ACVIP methods.

Utilizing a model-based specification together with JCA-defined functionality
provided a limited amount of interchangeability; however, challenges were uncovered that will
impact the potential future reuse of software in complex, safety critical systems. Differences in
low-level requirements result in integration challenges, rework, or fielded deficiencies. Since
low-level requirements play a significant role in the overall cost of major defense acquisitions
[31], the impact of differences could preclude efficient software reuse.

C. Reusable Verification Component

The RVC approach showed potential to satisfy some airworthiness requirements for
RSCs. Specific qualification objectives lend themselves to verification through an RVC
approach to testing; however, the terms under which such practice may be considered as part of a
qualification case are different on a case by case basis. Each Systems Integrator must interact
with their Airworthiness Authority to achieve concurrence on a plan for qualification. This plan
would necessarily include details as to how the partial qualification pedigree and/or automated

 31/32 (Blank)

testing of third-party software components might be part of the qualification case for a software
application, LRU, or avionics system. The RVC was beneficial to the Systems Integrator and
could provide a key element of the airworthiness qualification. Implementing the RVC as a
FACE software component provided the portability necessary to execute alongside of the RSC
on different OEs.

D. Experiment Approach

By conducting JCA Demo as a controlled experiment designed to learn by doing
enabled findings outside of what would traditionally be observed through a demonstration.
Limiting communications during integration uncovered additional findings that would have
simply been resolved on the side although it impeded the integration task. By emphasizing
lessons learned as the most important element of the demonstration timely changes to the JCA
process, FACE Technical Standard, FACE tools, and MBE methods were possible.

In total, 49 lessons learned were captured during the execution of JCA Demo. The
complete set of lessons learned and recommendations can be found in Appendix C.

E. Next Steps

It is recommended that MSAD continue with its plan of performing increasing
complex, robust experiments and demonstrations utilizing representative FVL acquisition
approaches. The breadth, magnitude, and ability to action the lessons learned from the JCA
Demo validated the technical approach of learning by doing and resulted in the maturation of the
JCA process, FACE Technical Standard, FACE tools, MBE, and ACVIP methods to address
FVL FOS complexity and affordability.

It would be beneficial for these standards, processes, and tools to also be matured by
other organizations, preferably through demonstrations similar to JCA Demo that involve
multiple systems and components from different organizations filling various roles, while
controlling the interactions to truly learn by doing. These kinds of demonstrations significantly
decrease risk for follow-on implementation by program offices.

33

REFERENCES

1. “DEFENSE ACQUISITIONS: Stronger Management Practices Are Needed to Improve
DOD’s Software-Intensive Weapon Acquisitions,” GAO-04-393, Government
Accountability Office, March 2004.

2. Hansen, M. and Nesbit, R., “Report of the Defense Science Board Task Force on Defense
Software,” Defense Science Board, November 2000.

3. Redman, D. et al., “Virtual Integration for Improved System Design,” Analytic Virtual
Integration of Cyber-Physical Systems Workshop, November 2010.

4. “LONGBOW APACHE HELICOPTER: Systems Procurement Issues Need to be
Resolved,” Government Accountability Office (GAO)/NSIAD-95-159, GAO,
August 1995.

5. “COMANCHE HELICOPTER: Testing Needs to be Completed Prior to Production
Decision,” Government Accountability Office (GAO)/NSIAD-95-112, GAO, May 1995.

6. “EMBEDDED COMPUTER SYSTEMS: C-17 Software Development Problems,”
Government Accountability Office (GAO)/IMTEC-92-48, GAO, May 1992.

7. “EMBEDDED COMPUTER SYSTEMS: New F/A-18 Capabilities Impact Navy’s
Software Development Process,” Government Accountability Office (GAO)/
IMTEC-92-81, GAO, September 1992.

8. “TACTICAL AIRCRAFT: F-22A: Modernization Program Faces Cost, Technical and
Sustainment Risks,” Government Accountability Office (GAO)-12-447, GAO, May
2012.

9. “JOINT STRIKE FIGHTER: Restructuring Places Program on Firmer Footing, but
Progress Still Lags,” Government Accountability Office (GAO)-11-325, GAO,
April 2011.

10. “F-35 SUSTAINMENT: Need for Affordable Strategy, Greater Attention to Risks, and
Improved Cost Estimates,” Government Accountability Office (GAO)-14-778, GAO,
September 2014.

11. “F-35 JOINT STRIKE FIGHTER: Problems Completing Software Testing May Hinder
Delivery of Expected Warfighting Capabilities,” Government Accountability Office
(GAO)-14-322, GAO, March 2014.

12. “DEFENSE ACQUISITIONS: Assessments of Selected Weapon Programs,”
Government Accountability Office (GAO)/AO-15-342SP, GAO, March 2015.

13. Foreman, V. et al., “Software in military aviation and drone mishaps: Analysis and
recommendations for the investigation process,” Journal of Reliability Engineering and
System Safety, January 2015.

34

REFERENCES (CONTINUED)

14. Dvorac, D., “NASA Study on Flight Software Complexity,” National Aeronautics and
Space Administration (NASA), Office of Chief Engineer, 2009.

15. Dova, V., “Software-Defined Avionics and Mission Systems in Future Vertical Lift
Aircraft,” National Aeronautics and Space Administration (NASA), Postgraduate School,
March 2015.

16. “DoD Open Systems Architecture: Contract Guidebook for Program Managers,”
Department of Defense (DoD) Open Systems Architecture Data Rights Team,
Version 1.1, June 2013.

17. “Integrated Modular Avionics IMA Development Guidance and Certification
Considerations,” DO-297, Radio Technical Commission for Aeronautics,
November 2005.

18. “Reusable Software Components,” AC 20-148, Federal Aviation Administration (FAA),
December 2004.

19. Feiler, P. and Gluch, D., “Model-based Engineering with AADL: An introduction to the
SAE Architecture Analysis & Design Language,” Addison-Wesley, 2012.

20. Boydston, A. et al. “Joint Common Architecture Demonstration Architecture Centric
Virtual Integration Process (ACVIP) Shadow Effort,” American Helicopter Society,
71st Annual Forum, Virginia Beach, VA., May 2015.

21. Vestal, S., “Joint Common Architecture Demonstration Shadow Architecture Centric
Virtual Integration Process–Final Technical Report,” Adventium Labs, October 2015.

22. Feiler, P. and Hudak, J., “Potential System Integration Issues in the JMR JCA
Demonstration System,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA., December 2015.

23. Feiler, P. “Requirements and Architecture Specification of the JMR JCA Demonstration
System,” Carnegie Mellon University (CMU)/Software Engineering Institute (SEI) 2015-
SR-030, SEI, CMU, Pittsburgh, PA, December 2015.

24. Feiler, P. “Architecture Led Safety Analysis of the JMR JCA Demonstration System,”
Carnegie Mellon University (CMU)/ Software Engineering Institute (SEI) 2015-SR-032,
SEI, CMU, Pittsburgh, PA, November 2015.

25. Technical Standard for Future Airborne Capability Environment (FACETM) Technical
Standard, Edition 2.0, The Open Group, February 2012.

35

REFERENCES (CONCLUDED)

26. “Developer’s Handbook for Airworthy, Reusable FACE Units of Conformance,” United
States (U.S.) Army, Aviation and Missile Research, Development, and Engineering
Center (AMRDEC), Software Engineering Directorate (SED), Redstone Arsenal, AL,
April 2014.

27. “DEFENSE ACQUISITION PROCESS: Military Service Chiefs’ Concerns Reflect
Need to Better Define Requirements before Programs Start,” Government Accountability
Office (GAO)-15-469, GAO, June 2015.

28. Riter, J. and Warpinski, M., “Joint Multi-Role Technology Demonstrator (JMR TD) Joint
Common Architecture Demonstration (JCA Demo),” RDECOM-TR-15-D-58, Honeywell
Aerospace, October 2015.

29. DuBois, T. and Kinahan, W., “Joint Multi-Role (JMR) Technology Demonstrator (TD)
Common Architecture Demonstration,” RDECOM-TR-15-D-52, Boeing Company,
Ridley Park, PA., May 2015.

30. Wigginton, S. and Carter, H. G., “Use of a Reusable Verification Component to Ensure
Compatibility of Portable Avionics Software for Multiple Operating Environments,”
American Helicopter Society (AHS) Specialists Meeting on the Development,
Affordability, and Qualification of Complex Systems, Huntsville, AL, 9-10 February
2016.

31. “A Joint Multi-Role Technology Demonstrator (JMR TD) Joint Common Architecture
Demonstration (JCA Demo) Broad Agency Announcement (BAA),” Solicitation Number
W911W614R0002, Location ACC-RSA-AATD-(SPS), Department of the Army, Army
Contracting Command, 27 January 2014.

36

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

Number

& and

@ at

3D Three-Dimensional

AADL Architectural Analysis and Design Language

ACVIP Architecture Centric Virtual Integration Process

ADDL Architecture Analysis and Design Language

AFDX Avionics Full-Duplex Switched Ethernet

AIPD Architecture Implementation Process Demonstration

ALRS Architecture Led Requirements Specification

ALSA Architecture Led Safety Analysis

AMD Advanced Micro Devices

AMRDEC Aviation Missile Research, Development, and Engineering Center

API Application Programming Interface

ARES Avionics Reference Embedded System

ARINC Aeronautical Radio, Incorporated

ASE Aircraft Survivability Equipment

ASIF Aviation Systems Integration Facility

AVD Air Vehicle Demonstrator

AWACS Airborne Warning and Control System

BAA Broad Agency Announcement

CA Certification Authority

CMU Carnegie Mellon University

Config Configuration

CONOPS Concept of Operations

CTS Conformance Test Suite

CW Curtis-Wright

DCFM Data Correlation and Fusion Manager

37

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (CONTINUED)

Demo Demonstration

DoD Department of Defense

e.g. For Example

EA Enterprise Architect

EGI Embedded Global Positioning System and Inertial Navigation System

etc. and so forth

FACE Future Airborne Capability Environment

FOS Family of Systems

FRA Functional Reference Architecture

FVL Future Vertical Lift

FY Fiscal Year

GAO Government Accountability Office

GB gigabyte

GHz gigahertz

GME Generic Modeling Environment

GPS Global Positioning System

H/W Hardware

HMFM Health Monitoring and Fault Management

i.e. that is

I/F Interface

I/O Input/Output

ICD Interface Control Document

ID Identification

IDL Interface Definition Language

IDM Improved Data Modem

IMA Integrated Modular Avionics

IOS Input/Output Segment

JCA Joint Common Architecture

38

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (CONTINUED)

JCA Demo Joint Common Architecture Demonstration

JMR Joint Multi-Role

km kilometer

Lab Laboratory

LLC Low-Level Capability

LRU Line Replaceable Unit

MB megabyte

MBE Model-Based Engineering

MEP Mission Equipment Package

MFD Multi-Function Display

MIL-STD Military Standard

MIS Modular Integrated Survivability

MLC Mission Level Capability

MMP Multicore Mission Processor

MOSA Modular Open Systems Approach

MS ETA Mission Systems Effectiveness Trades and Analysis

MSAD Mission Systems Architecture Demonstration

NASA National Aeronautics and Space Administration

O/S Operating System

OE Operating Environment

OSA Open Systems Architecture

OSATE Open Source Architecture Analysis and Design Language 2 Tool Environment

OSS Operating System Segment

PCS Portable Component Segment

PMO Product Management Office

POC Point of Contact

POSIX Portable Operating System Interface for UNIX

PSS Platform Specific Service

39

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (CONTINUED)

PSSS Platform Specific Services Segment

RF Radio Frequency

RFI Request for Information

RIG Reference Implementation Guide

RSC Reusable Software Component

RTOS Real-Time Operating System

RVC Reusable Verification Component

RX Receive

S&T Science and Technology

SA Situational Awareness

SADM Situational Awareness Data Manager

SDM Shared Data Model

SED Software Engineering Directorate

SEI Software Engineering Institute

SIL Systems Integration Laboratory

Sim Simulation

SLOC Source Lines of Code

Spec Specifications

STECA System-Theoretic Early Concept Analysis

SW Software

TD Technology Demonstrator

TS Transport Services

TSS Transport Services Segment

TX Transmit

U.S. United States

UAS Unmanned Aircraft System

UDP User Datagram Protocol

UML Unified Modeling Language

40

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (CONCLUDED)

UoP Unit of Portability

USG United States Government

VA Verification Authority

VBS Virtual Battlespace

VME Versa Module Europa

VMF Variable Message Format

WRA Weapon Replacement Assembly

x times

XMC Switched Mezzanine Card

APPENDIX A
DATA CORRELATION AND FUSION MANAGER SPECIFICATION

A-1

The following is an excerpt from the JCA Demo BAA Supplemental Package (Appendix
B). When combined with the electronically delivered DCFM Data Model it contained the
entirety of the requirements placed on the software component. The DCFM Data Model is a
limited distribution document, and can be obtained by contacting Aviation Development
Directorate, Attn: Joint Multi-Role Technology Demonstrator (JMR TD) Office, 401 Lee Blvd.,
Fort Eustis, VA 23604-5577.

Overview

This document serves as the specification for the Data Correlation and Fusion Manager
(DCFM) for the Joint Common Architecture (JCA) demonstration effort. This package
establishes the terms, requirements, demonstration scenario, component interactions and data
model.

Key Definitions

 Data Correlation and Fusion Manager (DCFM)-A software component that
integrates data from a variety of sources into a common Situational Awareness
(SA) view in real-time based on external sensors, internal sensors, and net centric
data.

 DCFM Data Model-Defines all of the classes, attributes, and relationships needed
to describe the un-correlated source and correlated source track data upon which
the DCFM will operate

 Track-An object in time and space defined by position data (measurements
{latitude, longitude, altitude}, measurement source, position errors and validity of
all measurements).

 Correlation-The process of analyzing source tracks in order to identify a single
entity that is represented by multiple source tracks and identifying a single
correlated track believed to represent the same uncorrelated source tracks,
combining the data from the duplicate uncorrelated source tracks, as appropriate.

 Decorrelation-The process of analyzing correlated tracks in order to identify
separate entities that have been misrepresented as a single correlated track,
breaking the linkage into separate correlated tracks.

 Source track-A track reported by a source that consists of a unique ID, source
identification, position data and time of detection.

 Correlated track-A track that has been analyzed and further identified as a single
entity from multiple sources tracks. Includes a unique ID, source track IDs,
position data and time of correlation.

Capability Requirement Specification

 The DCFM shall analyze uncorrelated source tracks in order to identify a single
correlated track believed to represent the same uncorrelated source tracks,
combining the data from the duplicate uncorrelated source tracks, as appropriate

A-2

 The DCFM shall analyze correlated source tracks in order to identify separate
tracks, breaking the linkage of the correlated track with the uncorrelated source
tracks, as appropriate

 The DCFM shall analyze tracks within 25km of own-ship position

 The DCFM shall correlate or de-correlate 50 source tracks within 1s

 The DCFM Data Model shall be used during the development of the software
component

 The DCFM shall be built as a FACETM Unit of Portability as specified in the Data
Model

 The DCFM shall have a verification statement provided by the candidate FACE
Conformance Tool Suite for the FACE ed. 2.0

JCA Demonstration Scenario

The scenario described below will be used to evaluate the developer’s implementation of
the Data Correlation and Fusion Manager. It will also be used to enable demonstration of how
the various sensors will be used in conjunction with the DCFM when integrated onto various
aircraft.

For this scenario on-board and off-board sensor data will be provided through a
publish-subscribe function from an on-board data manager (SA Data Manager).
The notional behavior of the Data Correlation and Fusion Manager is described below:

1. The target FVL aircraft flies its mission with its Threat Sensors Manager, EGI
Manager, and Tactical Data Modem Manager updating the SA Data Manager (SA
DM) service with source tracks and platform position.

2. The DCFM runs in the background and subscribes to the SADM service.

3. The DCFM reads the platform position from the SADM Service.

4. The DCFM reads all of the source tracks from the SADM Service.

5. The DCFM reads all of the correlated tracks from the SADM Service.

6. The DCFM executes its algorithms, using the platform, source and correlated track
data to correlate/de-correlate tracks within the specified requirements.

7. For a new correlated track, the DCFM inserts a correlated track in the SA DB
Service.

8. For an existing correlated track, the DCFM either modifies or removes the
correlated track in the SA DB Service as appropriate.

The DCFM interactions with the other UoPs in the system is shown in Figure A-1 with
specific details on the interaction with the SA Data Manager shown in Figure A-2.

A-3

Figure A-1. Component Level Interactions (Systems View)

A-4

Figure A-2. Dcfm/Sadm Interactions Diagram

APPENDIX B
JOINT COMMON ARCHITECTURE DEMOSTRATION BROAD

AGENCY ANNOUNCEMENT

B-1

The following is an excerpt from the JCA Demo BAA [31]. It included a Supplemental
package (partially captured in Appendix A) including the DCFM Data Model.

FROM THE SOLICITATION:

1. Detailed Topic Description

SOLICITATION TOPICS: There is one topic under this announcement.
TOPIC: JMR Technology Demonstrator Joint Common Architecture Demonstration

(JCA Demo)

1.1. Overview

JCA Demo seeks to achieve the following goals:
 Verify the JCA concept by:

o Procuring products defined by JCA V0.X in a representative acquisition process

o Developing a JCA component utilizing the Ecosystem

 Reduce risk for subsequent JMR TD efforts by:

o Understanding the level of effort (resources, cost, and schedule) required to implement

o Estimate potential benefits for the FVL FoS

JCA Demo will achieve these goals by procuring a software component defined by the JCA Model and
verify that it is:

 Modular—Functionality scoped and defined by JCA Model V0.X

 Portable—Executes on a common Operating Environment (OE) conformant to the FACE
Technical Standard ed. 2.0

 Interchangeable—External interfaces are open and defined using FACE data model

The JCA Demo will procure a software component built to the same specifications from
multiple vendors. The Government will integrate and compile each software component to
operate on multiple OEs. The demonstration will consist of executing a common scenario for
each software component on each OE in the lab. While the performance of each software
component on each OE will be evaluated, the goal is to verify the JCA concept, not procure the
most functional software component.

1.2. Technical Description

1.2.1. Software Component

The software component to be procured under this BAA is a Data Correlation and Fusion
Manager (DCFM) defined as a FACE Technical Standard ed. 2.0 Portable Component Segment
(PCS) Unit of Portability (UoP). This software component was selected based on available
Government resources and is generically defined with a minimal set of functionality for
demonstration purposes. The DCFM UoP is being developed specifically for laboratory use and
therefore has no airworthiness requirements (Design Assurance Level-E) despite being restricted
to the FACE Safety Profile. The DCFM UoP is specified through a combination of textual

B-2

descriptors and a data model provided in the “Supplemental Package.” See “Section 9.1
Instructions to Offerors” on how to obtain.

DCFM UoP developers SHALL provide behavior and performance characteristics of the
DCFM UoP to the government throughout the development process.

1.2.2. Operating Environments

Each OE consists of an ARINC 653 FACE Security Profile partition with FACE IOS &
TSS Layers on a General Purpose Processor (GPP). The DCFM UoP will be allocated at least
384 MB of RAM and 20% of the GPP (minimum GPP operates at 1 GHz).

1.2.3. Candidate FACE Tools

The Government seeks verification of the Candidate FACE Tools. Since the FACE
Technical Standard continues to evolve and the tools are constantly being updated to reflect the
changes, the intention is to utilize the latest version available at contract award.

The Candidate FACE Tools are available at https://face.isis.vanderbilt.edu/.

DCFM UoP developers SHALL use the FACE Modeling Tools with the supplied DCFM
Data Model to generate the data type and component files to produce the DCFM code set files.

DCFM UoP developers SHALL use the FACE Conformance Test Suite to verify
conformance of the DCFM.

DCFM UoP developers SHALL submit issues to the Candidate FACE Tools through the
“New issue” page on the Candidate FACE Tools website.

1.2.4. Reusable Verification

To perform verification of the DCFM UoP on each OE the Government requires a
Reusable Verification Component (RVC) that consists of a platform agnostic software test
harness (for example, software test fixture), platform agnostic automated test scripts (for
example, Python), and the necessary documentation (for example, test cases and operator
instructions.) The RVC provides the full suite of capabilities required to perform a verification
that the DCFM UoP operates as intended and satisfies its software requirements while executing
within each OE. The RVC captures the input conditions (parameters, ranges, sequences, and so
forth), expected results (pass/fail criteria), and traceability data which maps RVC test cases to
their corresponding DCFM UoP software requirements. This ensures compatibility with the host
hardware and provides verification of the platform integration as life-cycle changes are made to
each OE.

1.2.5. FACE Verification

DCFM UoP developers SHALL demonstrate how the DCFM UoP meets the
requirements of the FACE Technical Standard ed. 2.0. The Government will perform the
functions of a FACE Verification Authority.

DCFM UoP developers SHALL deliver preliminary FACE verification evidence, an
initial FACE Verification Package, and a final FACE Verification Package.

B-3

1.2.6. Government Lab

For this demonstration the Government will serve as the Systems Integrator with all
supporting equipment and personnel resident at the Aviation Systems Integration Facility (ASIF)
on Redstone Arsenal, AL. The government lab will include a software developer’s workstation
with all the necessary C/C++ compilers for the FACE Safety Profile OS’s selected.

DCFM UoP developers SHALL support Government lab integration efforts and FACE
verification activities via voice- and/or web-based communication up to 80 hours.

1.2.7. Proprietary Information

Government Support Contractors will be used in the lab to perform the integration tasks.
DCFM UoP developers need to address any proprietary tools or software items and address
mitigation strategies (e.g. non-disclosure agreements) within the technical proposal.
Government support contractors are currently covered by a non-disclosure agreement in
connection with the AMCOM Express contract. A copy of this non-disclosure agreement is
available upon request. DCFM UoP developers may enter into an additional proprietary
information agreement with Government support contractors at their option.

1.2.8. Lessons Learned

DCFM UoP developers SHALL participate in regularly scheduled meetings to discuss
development progress as well as lessons learned relevant to the JCA concept and FACE
products.

DCFM UoP developers SHALL identify airworthiness implications that would need to be
addressed if the DCFM UoP were targeted for a safety-critical implementation.

APPENDIX C
LESSONS LEARNED

C-1

Table C-1. Lessons Learned

ID Topic Issue Recommendation/Lesson Learned
1 JCA

Approach
Different model generation tools,
processes, and methods, were used
to develop various aspects of a
single system. Common touch
points existed between the different
models (such as the between
functional and behavioral models
and between functional and data
interfaces) but the overall process
lacked maturity and did not result
in an integrated, cohesive view.

Apply emerging JCA modeling
process and use Vertical Lift
Consortium (VLC) tasks to verify
and mature the approach.

Utilize further demonstrations to
explore the process (AIPD and
Capstone).

2 JCA
Approach

1) Prescribing a component’s
interface in a solicitation
constrained functionality and
performance. For example, the
Sikorsky/Boeing Cohesion product
was prevented from utilizing many
of the parameters it typically uses
to fine tune and enhance
performance.

2) JCA tasks with the VLC will
define the underlying data
requirements for low level
functions that combine to create
mission-level capabilities, but the
question remains as to what level of
detail the interface must be
specified and to what degree it
allows the use of existing
commercial products.

3) The FACE data architecture
leaves the messages open for the
Integrator to resolve semantic
definitions.

Define only the minimum set of
data elements required to meet
Threshold objectives but allow
extensions to the data model after
award.

Utilize Configuration Services to
enable algorithm tuning.

Design components to account for
unavailable/excessive data elements.

Use FACE Transport Services /
Integration model to mediate
between data sources and data sinks.

3 JCA
Approach

Developing, compiling, and
resolving lessons learned
throughout the S&T effort resulted
in timely and meaningful impacts.

Create a lessons learned template
and guidance to be used during other
MSAD efforts.

C-2

ID Topic Issue Recommendation/Lesson Learned
4 Requireme

nts
Due to the intentionally withheld
hardware specification, software
suppliers were required to make
assumptions to determine whether
their component would meet
performance requirements. These
included architectural and design
assumptions that are generally
provided during the acquisition
process (e.g., bandwidth allocation
and dependence on other software
applications had to be assumed).
Suppliers found that it would have
been helpful if certain technical
parameters had been made
available.

Describe the target hardware system
to the minimum necessary level of
detail in the system requirements.

Provide behavior characteristics of
the system that the UoP is being
integrated with (e.g., specify
minimum and maximum rates for
the SADM). Consider describing the
target system in an Architecture
Implementation Package.

Use available analytical tools (as
through ACVIP) to simulate and
predict the performance of the UoP
in the potential Operating
Environment.

5 Requireme
nts

Due to the lack of initially provided
behavioral description and data,
software suppliers were required to
make assumptions when
determining how the interface
interacted with other software
components.

Perform upfront analysis to identify
additional necessary information to
improve the quality of requirements.

Model system behavior (e.g. state
machine, timing diagram) and
include with the data model.

6 Requireme
nts

There are many details regarding
the data model’s use of “time” that
were open to interpretation and
could have significantly impact the
software provider’s
implementation. For example, time
might have meant the observation
time (i.e., the time a particular
artifact or event was observed by a
sensor) which could vary
significantly from off platform
sources. Time could also mean the
moment the message was first
received by the platform/SADM or
the time of the most recent update.
There was also uncertainty as to
whether the DCFM had access to
the same “time” as what was
represented in a specific message.

Monitor implementations that use
time elements and updates to the
FACE Shared Data Model.

Forward this concern as a new topic
for consideration by the FACE
Transport Services Subcommittee.

C-3

ID Topic Issue Recommendation/Lesson Learned
7 Requireme

nts
There was no explicit way to
determine processing resources
required by a software component.

Have Software Suppliers providers
include as much performance data as
is available to make FACE
components more useful.

Provide a model and data that
demonstrates past performance on
known hardware.

8 Software
Reuse

Evaluating a component for reuse
as a Software Supplier relies on
understanding the legacy
components dependencies on third
party software, such as libraries.
These dependencies could require
significant modification to achieve
conformance and Software
Suppliers are often less familiar
with the internal workings of third
party software components.

When evaluating a legacy
component for potential reuse as a
FACE component, analyze the
required third party software and its
impact for achieving FACE
conformance.

Develop additional descriptive
information on allowable FACE
Reference Implementation Guide
(RIG) Operating System Segment
(OSS) between Operating System
Abstraction Layer (OSAL) and shim
layer.

9 Modeling The FACE Data Model provides
the data definition, but does not
detail its usage. Process scheduling
message timing/rates, processor
utilization, memory requirements,
and sequential message exchanges
are some examples of additional
detail required.

Request the AADL and FACE
standards bodies collaborate to
determine correct data to incorporate
between models.

10 Modeling 1) Building objects in the data
model from standard types, such as
the ellipse used in “error ellipsoid”,
can be problematic. For example,
an ellipse requires an origin.
However, in the case of an ellipse
as an expression of uncertainty the
origin is the track location. Such
data duplication within the model is
likely to lead to errors.

2) There appears to be a gap in skill
sets between that needed for data
modeling as part of software

Develop education standards and
training for data architecture
representation and of for filling in
the human consumed semantic
aspects of the data architecture.

C-4

ID Topic Issue Recommendation/Lesson Learned
development vs. that needed for
systematic reuse of the data model.

11 Modeling Conversion issues occur between
the FACE Data Model and other
modeling tools/languages. Issues
between other modeling efforts is a
known challenge with no clear
resolution. The Rhapsody FACE
plugin does not align with
SysML/UML behavioral models
(e.g., the MIS system model).
Current efforts being worked to
address this issue include:
• Vanderbilt working a FACE to

EA conversion tool
• Vanderbilt working a FACE to

AADL translator
• SEI developing an EA to AADL

tool (EA AADL profile)
• System Architecture Virtual

Integration (SAVI) is working a
SysML to AADL translator

Add functionality to FACE DM
Plug-in(s) for SysML/UML tools
that converts from FACE XML to
SysML/UML.

12 Data
Rights

1) The DCFMs were acquired with
source code which was modified by
the System Integrator. When source
code is not available for integration
there may be other considerations
that need to be resolved.

2) The modifications made by the
System Integrator were evaluated
by both vendors and both
determined that the changes could
have been made outside of the
component’s source code.

3) Acquisition of FACE
components in a binary form may
identify new concerns or
difficulties.

Identify future opportunities to learn
lessons from acquisition of FACE
component without source code.

Conduct future demonstration
utilizing object code.

C-5

ID Topic Issue Recommendation/Lesson Learned
13 FACE

Standard
1) During implementation,
instances arose where the FACE
standard or Data Model were
insufficient to address an issue (e.g.
multiplicity). While resolving such
an issue it was observed that there
is no expedient way to insert
issues/concerns into the
Consortium for expedited
resolution.

2) The Minimal cycle time for
Corrigendum includes a 90 day
review period after the technical
solution is proposed.

Include contract language to address
procedures for resolution of issues
with the FACE standard
(Corrigendum process).

Allow sufficient time in contract
schedule to enable corrections
process/early verification of
conformance.

Conduct S&T Demonstrations to
exercise the various aspects of the
standard (breadth & depth) for
validation and maturation.

Develop an improved description of
the Corrigendum process for when
similar issues may occur.

Develop an improved description of
the VA approval process for when
similar issues may occur.

14 FACE
Standard

Procedures for software lifecycle
management and maintenance
against legacy and emerging
version of the FACE standard are
undefined.

The FACE Business Guide should
provide guidance on how to manage
the component lifecycle over
multiple versions of the FACE
Standard.

Update the FACE RIG to provide
guidance and examples for
Transport Services that meet
requirements of multiple versions of
FACE Standard.

15 FACE
Standard

The FACE Technical Standard 2.1
does not address the life cycle of a
component. It is allowable to
incorporate a lifecycle data type
and the use of a date read/callback
function. FACE Technical Standard
3.0 will include explicit version of
lifecycle callback.

1) Create data read/callback
guidance for the FACE Technical
Standard 2.1.

2) Verify the FACE Technical
Standard 3.0 supports the date
read/callback function.

3) Develop prototype concepts
under other S&T efforts to exercise
the date read/callback functions.

C-6

ID Topic Issue Recommendation/Lesson Learned
16 FACE

Standard
A Central Configuration Service
(CCS) relies on Transport Services
(TS) which requires the modeling
of data transferred, the level of
effort required to incorporate CCS
may hinder its use.

Monitor implementations to see if
this occurs.

17 FACE
Standard

The FACE Technical Standard
edition 3.0 will include Framework
Services such as multiple lifecycle,
execution, and initialization
bespoke interfaces (callbacks).
Other services will be through TS
(get/set time, logging events, etc.)
OS logging still occurs through the
HMFM (Health Monitoring and
Fault Management) interface.

Review Framework Services
changes in FACE Technical
Standard 3.0.

18 FACE
Standard

1) Compilers for RTOS’s are
limited in which versions of a
standard language are supported.

2) Solicitation requirements should
define the target language standard
version. Software Suppliers can
then use compiler options to limit
themselves to that version when
preparing an RVC in the Linux
environment.

Create internal guidance until FACE
Conformant RTOS's are available.

19 FACE
Standard

The FACE Standards included
ambiguous language features in
specific profiles resulting in a
dispute over the allowance of
exception handlers in the Safety
Profile.

The FACE Standards Subcommittee
has addressed the allowance of
exception handlers in a
Corrigendum. Review updated
language.

20 FACE
Standard

RTOS products are not currently
conformant with the FACE
Technical Standard requiring work
arounds for planned FACE
software components.

1) Current work arounds include:
 In the PCS utilize a software

shim, a library that intercepts
POSIX API calls and creates
resolutions when discrepancies
exist with the underlying OS.

 In the OSS utilize an OSAL.

2) Advocate for a community
developed common library of
conformant functions alternate to
restricted POSIX API calls. It may

C-7

ID Topic Issue Recommendation/Lesson Learned
be of value to the FACE Consortium
in creating a single solution
accessible by members which could
be included as part of the Integration
Workshops.

21 Data
Model

Current approaches and tools for
FACE Data Modeling are
cumbersome and tedious. Simple
changes require numerous
modifications at all layers of the
data model. This is amplified when
the model is derived from other
models (such as JCA.) Modeler’s
need the ability to affect change to
the many levels of the model
through graphical representation of
models and automation of model
changes.

1) Monitor commercial tool
maturation and provide investment
if insufficient.

2) Develop data modeling best
practices in the interim.

3) MSAD is investing in tools to
convert JCA model to FACE data
model and will explore their
effectiveness through AIPD.

22 Data
Model

The multiplicity of attributes
specified at Conceptual and Logical
levels of a FACE Data Model
dictate the array bounds of the
code. Ideally, the semantic
multiplicity would remain
unchanged for all implementation
multiplicities.

1) In the GME change the attribute
of multiplicity at the Conceptual and
Logical levels to match the
requirement implementation of
multiplicity.

2) Work with the FACE Data Model
Working Group and Vanderbilt
University to support separation of
semantics and implementation.

23 Data
Model

There was a significant delay
between the release of the latest
edition of the FACE standard (2.1)
and the Shared Data Model 2.1.
Procuring organizations will have
to weigh the advantage of
enhancements from a new version
with the risk of it not being
available on schedule.

Evaluate release cycle between
FACE Standard 3.0 and subsequent
SDM to determine if the first release
was an oddity. If not, identify
process improvements and engage
FACE Enterprise Architecture
process group to implement.

C-8

ID Topic Issue Recommendation/Lesson Learned
24 Data

Model
Data bandwidth between software
components can by reduced by
passing referential attributes (e.g.
Source Track Ids) instead of entire
data structures (e.g. Source Tracks).

This principle was applied to the
set of Correlated Tracks, each of
which are semantically associated
with a set of Source Tracks.
However, limitations in the FACE
Technical Standard required a
workaround solution which ignored
any semantic associations.

Adjust the FACE Technical
Standard and associated Ecosystem
Tools to support the projection of
selected characteristics (attributes)
from a set of entities into a view
along with a “selection” feature to
allow multiple instances of the
projected data.

This recommendation is an expected
feature of the FACE 3.0 technical
standard that allows differing
multiplicities to exist between the
various data model levels, and a
selection feature based on SQL.

25 Data
Model

No best practice exists as to
whether the procuring agency or
Software supplier should be
responsible for submitting additions
to the FACE SDM to achieve
conformance.

A best practice is to contractually
require addition of new elements to
SDM but alternative method
(business driven) allows User
Supplied Model (USM) to pass
FACE conformance without SDM
elements (other than basis elements)
but the USM must be available with
the UoP

26 Data
Model

The use of a data model is
insufficient for communicating
behavioral and functional
requirements. Additional
information regarding component
interaction with the system is
necessary.

1) Include component behavior in
addition to data model that includes
timing / temporal / time stamping
requirements as well as environment
information pertaining to
configuration requirements and
system features description.

2) Analysis of the system to catch
these shortcomings is required prior
to solicitation to improve textual
and/or modeled specification.

27 Data
Model

Data Structure has impacts on
performance, which may result in
scalability issues that challenge
portability between
implementations. Models that
require large sets of data will likely
require significant tailoring for a
specific system.

Develop education standards and
training for data architecture
representation, and for filling in the
human consumed semantic aspects
of the data architecture. Data
modeling requires flexibility to
support anticipated tailoring.

C-9

ID Topic Issue Recommendation/Lesson Learned
28 Data

Model
Data Modeling requirements have
limited the ability of software
components to utilize variable
length messages when exchanging
data through the TSS.

Variable length messages are a
concern for determinism, but may
have useful cases for application
(General Purpose Profile).

Future versions of the FACE
Technical Standard should provide a
method for using variable length
messages within TS.

Variable length messages useful “on
the wire”, but less useful between
the TS
- Pass reference below the TS.

29 TSS The Send_message parameter is
ambiguous in 2.0 as to whether it is
a constant or not. The Technical
Standard defines variables for the
function calls of the TS API, but
does not indicate how these
variables should be used.

Improve FACE tools to generate
code that provides complete input to
TS API

Correct inconsistencies between
FACE RIG and the TS API
(NO_ACTION vs
NOT_AVAILABLE)

30 TSS The propagation of multiple copies
of data due to Transport
Services/architecture approach is
inefficient, and more guidance
should be provided to developers.

Tooling should provide developers
with guidance and support for
efficient implementation decisions.

31 TSS The FACE Technical Standard
does not address endianness or
alignment of multi-byte fields in
messages exchanged between
UoP’s hosted on CPUs with
differing architectures. This can
impact the portability of a TS or
limit the ability to integrate
differing TS implementations.

1) This is intentional for edition
2.0/2.1

2) Edition 3.0 plans to address an
encapsulation approach for TS
Interoperability

32 TSS The example code to create a
connection provided in the FACE
implies a DDS Domain participant

It should be clear that the example
code is only just an example. 3.0
will be moving example code into
RIG which will help clarify.

33 TSS Historically, integrators have
expressed concern over the
possibility of latency caused by
FACE TSS.

The Boeing Formation Flight UoP
implementation measured latencies
of 22.6 s, which appears to negate
concerns of unacceptable latencies.

34 FACE
Tools

Software Development Kit
(SDK)/Integration Tool Kit (ITK)
and CTS were immature for JCA
Demo, and several issues were
identified while using the v2.0 tool

1) Close the gap between Technical
Standard publication and delivery of
tools.

C-10

ID Topic Issue Recommendation/Lesson Learned
suites. There is also an issue of lag
between tool availability and
publishing of the tech standard.

2) Have an independent group verify
tool(s) and supporting
documentation are ready for use.

35 FACE
Tools

The FACE TSS generator uses
function calls specific to the
ARINC 653 Emulator, which are
not allowed by the FACE technical
standard or supported by RTOS
vendors.

FACE tools should be modified to
support TSS generation for each
RTOS vendor.

36 FACE
Tools

Although they may have been
supported by the ARINC-653
emulator, some tool generated API
calls were not available on the
VxWorks653 or LynxOS178
RTOSs. Additionally, some calls
were not FACE conformant either.

Tool-generated API calls need to be
supported by available RTOS’. A
detailed list of generated API calls
unsupported by the RTOS’s needs to
be provided to the FACE Academia
group in order to improve FACE
Tools (auto-generation and FACE
conformance for the ARINC-653
emulator).

37 FACE
Tools

Some settings in the FACE
Conformance Verification Tool
should be specified by the
integrator or UoP requestor. When
developing a UoP for the Safety
Profile, the OS setting to use for
conformance may not be clear:
ARINC 653 or POSIX + ARINC
653.

Update the conformance
tool/process to allow integrator, or
UoP requestor, to specify the
identified settings.

38 FACE VA The list of required artifacts to
support conformance verification
was unclear, and did not specify the
necessary evidence for preliminary,
initial and final delivery.

1) Identify and clearly describe
contents of the verification package
as one or more CDRLs that are
traced to multiple deliveries.

2) Develop conformance guidance
language to describe Army VA
conformance expectations.

39 FACE VA The FACE Conformance Statement
instructions and Registry lacked
guidance that made it difficult for
the vendor to determine
expectations.

1) Improve registry guidance to
make the process and step ordering
clear.

2) Review and improve ordering
and consistency in Army VA
process.

C-11

ID Topic Issue Recommendation/Lesson Learned
3) Investigate need to provide
“outreach” for using PMs to
understand process and value.

40 FACE VA Verification activities must remain
distinct and separate from supplier
development activities. While there
is a need for open communication
between the supplier and the VA,
the nature of the communication
should be closely monitored to
avoid a conflict of interest.

VA processes need to clearly
segregate consultant and evaluator
responsibilities. The VA may
provide “as-built” technical
assistance with respect to navigating
the conformance process, but in no
way should provide design or
implementation guidance.

41 FACE VA The VA process does not include a
list of authorized POCs.
Communication is crucial for VA
activities, but progress and effort
cannot be shared outside of
authorized personnel. A list of
authorized POCs is needed.

The VA process should not be
reliant upon a single POC. The
Army VA should establish a POC
listing with clear addition/removal
procedures.

42 RVC Procuring a RVC in order to obtain
a "reusable test harness" requires
the identification of best practices
and contractual language
recommendations in order to ensure
the RVC is provided with sufficient
documentation.

The RVC proved useful in
validating acquired component
functionality prior to integration. A
number of options are available in
procuring a RVC such as 1) using a
meta-model; 2) specifying the RVC
as a UoP; and 3) allowing the
vendor to decide the best method of
achieving portability.

During this demonstration, options 2
and 3 were evaluated, and option 2
was demonstrably easier to port to
differing operating environments.
The component may not always
warrant the effort to produce a RVC
UoP, but guidance should be
provided to assist in determining
when it is recommended and the
artifacts necessary to support the
RVC.

43 Integration Lack of header file standardization
impacts software portability.

RTOS header files for FACE APIs
are not standardized.
Inconsistencies exist because, the

1) RTOS header files need to be
standardized

2) Submit request to ARINC 653 to
standardize the name of the header
file.

C-12

ID Topic Issue Recommendation/Lesson Learned
FACE API is only documented in
IDL, and ARINC 653 header files
are vendor specific.

3) Until addressed by ARINC 653
standard and if not using FACE
Tools, Acquirer should require
Software Supplier to define the path
to header files in a single location
that can be readily modified to port
code.

44 Integration Lack of connection name
standardization impacts software
portability.

The ARINC 653 standard does not
specify requirements for connection
names, however RTOS
implementations did place
limitations on connection names
such as a maximum length of 30
characters (VxWorks) or invalid
characters “<“, “>” (LynxOS).

Several options exist to correct this
issue: 1) Improve ARINC 653
standard by specifying permissible
connection names; 2) Improve
FACE tools to accommodate RTOS
implementations; 3) Determine the
limitations of each RTOS and have
the Acquirer require the System
Integrator and Software Suppliers
meet those limitations for ARINC
653 connection names.

45 Integration LynxOS178 2.3 has an
implementation of the
CREATE_PROCESS ARINC 653
API call that interprets the ARINC
653 standard in a unique way.

Provide feedback to Lynx to
harmonize interpretation of ARINC
653.

46 Integration Architecture assumptions based on
known RTOS behaviors may
impact portability to a POSIX
implementation causing potential
issues with ARINC 653 scheduling.

This issue may not represent a valid
use case as it pertains to
compatibility versus a legacy
integration challenge. Additional
effort is necessary to determine if
sufficient cause exists to attempt to
resolve.

47 Integration An unrecognized defect in the
chassis caused a delay in
completing the MIL-STD-1553
IOS implementation for OE 2.
When the chassis was received only
1 out of 4 slots was validated.

Incorporate more complete process
for validation of acquired lab
hardware.

48 Integration When testing the integrated
product, the validator needs to
identify the input parameters which
have the most effect on a particular
functionality under test.

Specific test artifacts are necessary
to support integration activities.

Insufficient information exists to
determine if this was a shortcoming
in the JCA requirements

C-13

ID Topic Issue Recommendation/Lesson Learned
Information regarding specific
values or ranges a particular field
must be set to can streamline the
validation process.

specification, or if it is related to the
RVC approach.

49 Integration Interchangeability depends upon
more than interfaces.

Future demonstrations and
procurements need to determine the
appropriate combination of
functional description, behavior, and
environmental description in
addition to data (interface)
specification in order to achieve
interchangeability.

